Visiting Assistant Professor Department of Mathematics University of Wisconsin-Madison	Email: sdu49@wisc.edu Website: https://shukaidu.github.io		
 RESEARCH INTERESTS Scientific machine learning and data-driven methods Computational inverse and ill-posed problems 			
 Finite element and discontinuous Galerkin methods Numerical methods for radiative transfer Electromagnetic and elastic/viscoelastic waves 			
EDUCATION			
 University of Delaware Ph.D in Applied Mathematics Advisor: Dr. Francisco-Javier Sayas Thesis: Generalized projection-based Galerkin methods 	May 2020 error analysis of hybridizable discontinuous		
Wuhan UniversityM.S. in Computational MathematicsB.S. in Pure Mathematics	2015 2012		
PROFESSIONAL EXPERIENCEUniversity of Wisconsin-MadisonVisiting Assistant Professor	Sep 2020 – Now		
University of Minnesota-Twin CitiesVisiting Doctoral Student	Sep 2019 – June 2020		

PUBLICATIONS

Submitted

15. **S. Du**, and S. N. Stechmann. Element learning: a systematic approach of accelerating finite element-type methods via machine learning, with applications to radiative transfer. arXiv: 2308.02467.

Peer-reviewed

- 14. **S. Du**, and S. N. Stechmann. Inverse radiative transfer with goal-oriented hp-adaptive mesh refinement: adaptive-mesh inversion. *Inverse Probl. 39 (2023), no. 11.* DOI: 10.1088/1361-6420/acf785
- B. Cockburn, S. Du, M. A. Sánchez. A priori error analysis of new semidiscrete, Hamiltonian HDG methods for the time-dependent Maxwell's equations. *ESAIM: M2AN 57* (2023), no.4, 2097-2129. DOI: 10.1051/m2an/2023048

- 12. **S. Du**, and S. N. Stechmann. Fast, low-memory numerical methods for radiative transfer via hp-adaptive mesh refinement. *J. Comput. Phys.* 480 (2023). DOI: 10.1016/j.jcp.2023.112021
- 11. **S. Du**, and S. N. Stechmann. A universal predictor-corrector approach for minimizing artifacts due to mesh refinement. *J. Adv. Model. Earth Syst. 15 (2023)*. DOI: 10.1029/2023MS003688
- B. Cockburn, S. Du, M. A. Sánchez. Combining finite element space-discretization with symplectic time-marching schemes for linear hamiltonian systems. *Front. Appl. Math. Stat. 9* (2023).
 DOI: 10.3389/fams.2023.1165371
- M. A. Sánchez, S. Du, B. Cockburn, N.-C. Nguyen, J. Peraire. Symplectic Hamiltonian finite element methods for electromagnetics. *Comput. Methods Appl. Mech. Engrg.* 396 (2022).

DOI: 10.1016/j.cma.2022.114969

- B. Cockburn, M. A. Sánchez, S. Du. Discontinuous Galerkin methods with timeoperators in their numerical traces for time-dependent electromagnetics. *Comput. Meth. Appl. Math.* (2022). DOI: 10.1515/cmam-2021-0215
- S. Du, and F.-J. Sayas. A note on devising HDG+ projections on polyhedral elements. Math. Comp. 90 (2021), 65-79. DOI: 10.1090/mcom/3573
- S. Du. HDG methods for Stokes equation based on strong symmetric stress formulations. J. Sci. Comput. 85, 8 (2020). DOI: 10.1007/s10915-020-01309-7
- S. Du, and F.-J. Sayas. A unified error analysis of hybridizable discontinuous Galerkin methods for the static Maxwell equations. *SIAM J. Numer. Anal.* 58 (2020), no. 2, 1367–1391. DOI: 10.1137/19M1290966

```
    4. S. Du, and F.-J. Sayas. New analytical tools for HDG in elasticity, with applications to elastodynamics. Math. Comp. 89 (2020), 1745-1782.
DOI: 10.1090/mcom/3499
```

- 3. S. Du, and N. Du. A factorization of least-squares projection schemes for ill-posed problems. *Comput. Meth. Appl. Math. 20 (2020), no. 4, 783-798.* DOI: 10.1515/cmam-2019-0173
- T.S. Brown, S. Du, H. Eruslu, and F.-J. Sayas. Analysis of models for viscoelastic wave propagation. *Appl. Math. Nonlin. Sci. 3 (2018), no. 1, 55-96.* DOI: 10.21042/AMNS.2018.1.00006

Books

 S. Du, and F.-J. Sayas. An invitation to the theory of the Hybridizable Discontinuous Galerkin Method. *SpringerBriefs in Mathematics (2019)*. DOI: 10.1007/978-3-030-27230-2

GRANTS

• NSF (DMS–2324368): Breaking the 1D Barrier in Radiative Transfer: Fast, Low-Memory Numerical Methods for Enabling Inverse Problems and Machine Learning Emulators. Senior personnel. \$498,832 total, \$350,000 at UW (2023–2026). • NSF (AGS–2326631): Convective Processes in the Tropics Across Scales. Senior personnel. \$768,471 total, \$471,155 at UW (2024–2026).

PRESENTATION

Invited talks

Invit	ed talks	
26.	Element learning: a systematic approach of accelerating finite element	-type methods
	via machine learning	
	Analysis and Data Science Seminar, SUNY at Albany	Feb 2024
25.	. Element learning: a systematic approach of accelerating finite element-type methods	
	via machine learning	
	Math Department Colloquium, Syracuse University	Jan 2024
24.	. Element learning: a systematic approach of accelerating finite element-type methods	
	via machine learning	
	Math Department Colloquium, Chinese University of Hong Kong	Dec 2023
23.	Element learning: a systematic approach of accelerating finite element-	type methods,
	with applications to radiative transfer	
	University of Electronic Science and Technology of China	Nov 2023
22.	22. Element learning: a systematic approach of accelerating finite element-type methods	
	via machine learning, with applications to radiative transfer	
	Scientific Computing Seminars, University of Houston	Nov 2023
21.	21. Element learning: a systematic approach of accelerating finite element-type methods	
	via machine learning, with applications to radiative transfer	
	Applied Math seminar, University of Louisiana at Lafayette	Oct 2023
20.	0. Element learning: a systematic approach of accelerating finite element-type methods,	
	with applications to radiative transfer	
	Numerical analysis and PDE seminar, University of Delaware	Sep 2023
19.	9. Energy-conserving discontinuous Galerkin methods with time-operators in their traces	
	for time-dependent electromagnetics	_
	17th UCNCCM, Albuquerque, NM	July 2023
18.	18. Fast, low-memory methods for radiative transfer through hp-adaptive mesh refine-	
	ment	
	13th AIMS meeting, Wilmington, NC	June 2023
17.	Unified analysis of HDG methods for the static Maxwell equations	
	CILAMCE-PANACM 2021, Brazil	Nov 2021
16.	Generalized projection-based error analysis of hybridizable discontin	uous Galerkin
	(HDG) methods	I 0001
1 -	CEDYA2021, Spain	June 2021
15.	Projection-based analysis of hybridizable discontinuous Galerkin (HDG	
11	Wenbo Li Prize Talk, U of Delaware	Feb 2020
14.	Unified analysis of HDG methods for the static Maxwell equations	Max 0001
10	SIAM CSE2021, Virtual Meeting	Mar 2021
13.	New analysis techniques of HDG+ method	Oct 2010
10	SIAM Sectional Meeting, Iowa State U	Oct 2019
12.	Uniform-in-time optimal convergent HDG method for transient elastic waves with strong symmetric stress formulation	
	WAVES2019, TU Wien, Vienna	Aug 2019
	WAVE52017, 10 WICH, VICHIA	Aug 2019

11.	Hybridizable Discontinuous Galerkin schemes for elastic waves	July 2010
10	<i>ICIAM2019, Valencia</i> HDG for transient elastic waves	July 2019
10.	WONAPDE2019, U of Concepcion	Jan 2019
	ributed talks	
9.	Element learning: accelerating finite element methods via operator le	-
_	FEM Circus, U of Notre Dame	Oct 2023
8.	Three-dimensional radiative transfer: fast, low-memory numerical me	
_	Collective Madison Meeting, Madison, WI	Aug 2022
7.	Projection-based analysis of HDG methods with reduced stabilization	
C	DelMar Num Day 2019, U of Maryland	May 2019
6.	Projection-based error analysis of HDG methods for transient elastic v	
-	FEM Circus, U of Delaware	Nov 2018
5.	Devising a tailored projection for a new HDG method in linear elastic	Mar 2018
1	<i>FEM Circus, U of Tennessee</i> A new HDG projection and its applications	Widi 2010
4.	Mid-Atlantic Numerical Analysis Day, Temple U	Nov 2017
	wid-Adamic Numerical Adalysis Day, Temple O	1101 2017
Poste	er presentation	
	Fast, low-memory numerical methods for radiative transfer: forwa	ard and inverse
	problems	
	New Trends in Computational and Data Sciences, Caltech	Dec 2022
2.	Hybridizable Discontinuous Galerkin methods in transient elastodyna	mics
	FACM2018, New Jersey Institute of Technology	Aug 2018
1.	Building a computational code for 3D viscoelastic wave simulation	
	Mid-Atlantic Numerical Analysis Day, Temple U	Nov 2016
TEACHING		
	uctor	
	Linear Algebra and Differential Equations (Math320)	Spring 2023
	Linear Augebra and Differential Equations (Matho20)	oping 2020
Teac	hing Assistant	
•		2016&2017 Fall
	Analytic Geometry and Calculus B (Math242)	2017 Spring
	Calculus I (Math221)	2018 Spring
•	Review of Advanced Mathematical Problems	
	(summer courses offered to incoming graduate students)	2018 Fall
MENTORIN	G ACTIVITIES	
	luate mentorship	
	Jason Torchinsky (co-mentored with Samuel N. Stechmann)	2022 – 2023
	ergraduate mentorship	
•	WISCERS project at the University of Wisconsin-Madison	2023
	– a research-focused mentorship program for undergraduate students	
•	GEMS summer research project at the University of Delaware	Fall 2016

JOURNAL REFEREE

Journal of Scientific Computing SIAM Multiscale Modelling and Simulation ESAIM: Mathematical Modelling and Numerical Analysis Computers and Mathematics with Applications Frontiers in Applied Mathematics and Statistics

AWARDS AND HONORS

Wenbo Li Prize	2020
University Doctoral Fellowship Award at the University of Delaware	2019
ICIAM2019 travel grant	2019
Graduate Enrichment Fellowship at the University of Delaware	2018
GEMS project fund at the University of Delaware	Summer 2016
National Scholarship for Graduate Students of China	2013
People's Scholarship of Wuhan University	2011
Outstanding Student of Wuhan University	2009 – 2011

CODING PROJECTS

Fast, low-memory methods for radiative transfer

- Build a cell-based structured adaptive mesh refinement (AMR) data structure
- Implement discontinuous Galerkin (DG) methods with *hp*-adaptivity for the full radiative transfer equation

Hybridizable Discontinuous Galerkin (HDG) methods

(based on HDG3D library: github.com/team-pancho/HDG3D)

- Build Matlab codes of high order HDG methods on computing cluster for transient elastic/viscoelastic waves and Maxwell equations
- Write documentation with detailed implementation procedures for HDG methods for Maxwell equations

Finite Element Method (FEM)

(based on Team Pancho FEM library: team-pancho.github.io)

• Build Matlab codes of high order FEM methods on computing cluster for simulation of viscoelastic waves.

Multiscale modeling

2013 - 2015

2016

2020 - 2022

2016 - 2020

• Implement algorithms to calculate Cauchy stress tensor based on micro-scale molecular dynamics information

COMPUTER SKILLS

Theory Data Structures • Algorithm • Object Oriented Programming Languages & Software Matlab • Python • C • C++ • Fortran • openMPI • LISP • Linux Shell