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Overview. I am interested in the general realm of applied mathematics, particularly em-
phasizing on computational methods and their rigorous mathematical analysis. To be more
specific, my current research interests lie in the intersection of the following areas: (1) sci-
entific machine learning and data-driven methods, (2) computational inverse and ill-posed
problems, and (3) analysis of numerical methods for partial differential equations.

1 Scientific machine learning and data-driven methods

1.1 Background and motivation
In the past decade, (artificial) neural networks and machine learning tools have surfaced
as game changing technologies across numerous fields, solving an array of challenging
problems. Examples include image recognition, playing the game GO, protein folding, and
large language models such as GPT3. Given these impressive results, it is reasonable to
envision the potential of neural networks (NNs) for the numerical solution of partial differential
equations (PDEs) or other scientific computing problems.

1.2 Element learning – a systematic approach of accelerating finite
element-type methods by machine learning

My research interests in this area center around the consideration of the following two closely
related questions:

1. What are the advantages and limitations of machine learning based methods compared
to classical numerical methods (e.g. finite element)?

2. How to combine their advantages?

Thinking about the above two questions has led to a recent discovery of a new com-
putational framework which we call element learning. This new approach can be used to
systematically accelerate finite element-type methods through machine learning while still
retaining the many advantages of classical finite element-type methods, such as proficient
handling of complex geometry and boundary conditions, reliability, etc.

Our numerical results for radiative transfer equation show that element learning can gen-
erally achieve at least 5 to 10 times speed-up compared to a classical finite element-type
method while retaining the same accuracy requirement. We refer to Figure 1 for one of our
numerical results and [6] for more detail on our discovery.
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Figure 1: Radiative intensity for water clouds calculated by element learning and discontinuous
Galerkin methods. Both methods provide a numerical solution with relative L2 error of 10´3, while
element learning is 5 to 10 times faster.

Element learning can be derived from two perspectives: (1) mitigate the difficulties of op-
erator learning by using an elementwise approach, (2) accelerate finite element-type meth-
ods by machine learning. It is therefore a natural framework which connects finite element-
type methods and operator learning. To be more specific, for a general PDE

Lpσqrus “ f in Ω,

whereL represents the differential/integral operator, σ is the PDE parameter, u is the solution,
f is the boundary/forcing data, and Ω is the domain. Element learning seeks to approximate
the following map using a neural network (NN):

(Element learning) pσ,Kq
NN
ÝÑ rf ÞÑ us,

where rf ÞÑ us represents the Green’s function on the element K. See Figure 2 for a
visualization of the core idea of element learning.

1.3 Future research plan – theoretical foundation for element learning
A major part of my future research goal is to build the theoretical foundation for element
learning. We next explain this with more detail.

The main idea of element learning is to use a neural network (NN) to approximate the map
from element geometry and PDE parameter to the elementwise solution operator (Green’s
function). An important topic to be studied is the numerical analysis of element learning. We
are interested in the following two related questions:

1. How well the NN can approximate the map? (approximation error, generalization error,
optimization error)

2. How to improve the approximation capability and efficiency of the NN?
Answers to the above questions can help us solve the following problems.
Larger p. Even greater speed-up can be expected if a higher order polynomial degree p is
used. At the same time, for larger p, it becomes more difficult to train the neural network. How
to choose the polynomial degree for a good balance between the efficiency of the method (for
which we aim to increase p), and the reliability of the method (for which we aim to decrease
p), remains to be studied.
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Figure 2: A finite element mesh is broken down element by element. For each element, a neural
network takes the element geometry and PDE parameters as inputs, and returns the in2sol and
in2out operators as outputs. Here in2out is for inter-element communication, in2sol is for element-
wise solution recovery. Then, these operators are coupled to find the global solution using techniques
from hybridizable discontinuous Galerkin (HDG) methods.

Neural network with a priori structure. The current approach uses a fully connected neu-
ral network without any a priori structures. It remains to be studied that whether better
approximation of the networks can be achieved by introducing additional structures, such
as convolutional layers (CNN), attention mechanism (transformer), or shortcut connections
(ResNet).

2 Computational inverse and ill-posed problems

2.1 Background and motivation
The inverse problems that particularly capture my interest fall under the category of inverse
transport problems, or more specifically the inverse radiative transfer. These problems serve
as the mathematical foundation for a wide spectrum of applications such as optical tomog-
raphy and remote sensing.

Despite their broad applications, devising numerical methods for inverse radiative transfer
is notoriously challenging. This is largely due to the high-dimensional nature of the forward
problem. Standard discretizations that meet the accuracy standards often demand signifi-
cant memory resources, making the solver inefficient and sometimes impractical. This chal-
lenge amplifies in the inverse problem scenario, where numerous iterations of the forward
problems are necessary. As such, there’s a pressing need to design numerical methods that
are memory-efficient and have fewer degrees of freedom (DOFs) without compromising on
accuracy.
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2.2 Adaptive-mesh inversion – a goal-oriented adaptive mesh refine-
ment method tailored for solving inverse problems

To address the challenges previously mentioned, we introduced the so called adaptive-mesh
inversion method. This is a goal-oriented hp-adaptive mesh refinement (AMR) technique tai-
lored for solving inverse problems. A distinctive feature of the approach is the integration of
two optimization processes: one for inversion and the other for mesh adaptivity. By lever-
aging the connections between duality-based mesh adaptivity and adjoint-based inversion
techniques, we are able to devise a goal-oriented error estimator. This estimator is cost-
effective to compute. The numerical tests suggest it can efficiently steer mesh-refinement to
effectively address the inverse radiative transfer problem.

To explain the main idea of our method, we write the inverse radiative transfer problem
as the following optimization problem:

min
σ,T I

hp

Φpσ, T I
hpq :“

Nt
ÿ

i“1

Nm
ÿ

j“1

wij|Mj DGSEpT i
hp, σqrF i

s ´ yij|2 ` αRpσq,

where the first term represents the discrepancy between the numerical solution and the mea-
sured data, and the second term represents the regularization. Then the main idea of our
methodology can be visually represented as in Figure 3.

(goal-oriented AMR) BΦ
BThp

BΦ
Bσ (inverse problem)

provide efficient approximations

provide error estimators

Figure 3: Core idea of adaptive-mesh inversion. Here, Φ is the typical optimization function for an
inverse problem, Thp is a finite element mesh, and σ denotes the PDE parameter that we aim to
recover.

When compared with standard error reduction strategies such as uniform h-refinement,
uniform p-refinement, and standard (non-goal oriented) hp-adaptive mesh refinement, our
proposed method delivers better recovered optical coefficient with a reduced count of DOFs.
We refer to Figure 4 for one of our numerical results and [8, 7] for more detail.

2.3 Future research plan
While the method is proposed for inverse radiative transfer, the general principles of devising
the error estimators and the refinement algorithms should be able to be naturally extended
to enable adaptive-mesh inversion for other types of inverse problems, such as the Calderón
problem, inverse scattering, and remote sensing. I am interested in extending the proposed
method to these other applications.
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Figure 4: Comparison between the meshes obtained by goal-oriented and standard error estimator.
The goal oriented estimator is able to refine along the path from the optical scatter to the sensor while
the standard estimator fails to provide accurate measurements around the sensor.

3 Analysis of numerical methods for partial differential equa-
tions

3.1 Background and motivation
The numerical methods I am primarily interested in belong to a class of finite element meth-
ods called hybridizable discontinuous Galerkin methods, or simply HDG methods. A signifi-
cant advantage of HDG methods is that they can reduce the globally coupled DOFs by static
condensation. See the following figure, HDG is able to remove all interior nodes of DOFs.

DG HDG

In addition, HDG methods lie in between the two most important groups of finite element-
type methods: (1) conforming/mixed methods and (2) discontinuous Galerkin (DG) methods.
This enables HDG to combine the many advantages from these two groups. Here we list a
few of them:

1. Naturally support static condensation for DOFs reduction (as was mentioned above)
2. Optimal accuracy and super-convergence
3. Exactly divergence free, pressure robust, locking free, spurious modes free
4. Geometric flexibility and mesh adaptation - unstructured mesh, hanging nodes, hp-

adaptivity
5. Parallelization - local problem solution processes are completely independent

3.2 Generalized projection-based analysis of HDG
HDG methods can be separated into two groups – (1) the HDG methods that are more
alike conforming/mixed methods (the HDG methods which admit M -decomposition), and

5



(2) the HDG methods which are more alike nonconforming/DG methods (the HDG methods
which do not admit M -decomposition). As a result, their corresponding analysis was also
separated into two groups: for those more alike mixed methods, they were analyzed similar
to the classical analysis of mixed methods, by the so-called projection-based analysis; on
the other hands, for those more alike nonconforming/DG methods, they were analyzed by
ad-hoc approaches. This separation of analysis has the following undesired consequences:

• Those ad-hoc analysis is not as concise and simple as the projection-based analysis
• Ad-hoc analysis becomes difficult for complicated problems (e.g., time-dependent prob-

lems, coupling problems)
• Analysis is hard to reuse because of the separation

DG

HDG

M -decompositions

conforming/mixed FE HDG-M

...

HDG-LS

...RT BDM ...

projection-based analysis ad-hoc analysis

Generalized projection-based analysis
(D., Sayas, around 2020)

To address this issue, we developed the so-called generalized projection-based analy-
sis, extending the classical projection-based analysis to those HDG method which do not
admit M -decomposition (e.g. Lehrenfeld-Schöberl HDG), thus enabling a unified analysis.
What lies at the center of this framework is a mathematical object we introduced – boundary
remainder δ – to quantify the nonconformity of a given projection. For instance, in [4], we
introduce the curl-curl boundary remainder for analyzing the HDG methods for Maxwell’s
equations:

δΠ
τ : H1

pK;R3
q ˆ H1

pK;R3
q Ñ NpBKq,

pw,uq ÞÑ n ˆ Πw ´ PNpn ˆ wq ` τpPNΠu ´ PNuq,

where Π is a given projection, NpBKq is the tangential trace space on the boundary of an
element K, and PN is the L2 projection to NpBKq.

The following three inequalities show the abstract form of the energy identities obtained by
using classical and generalized projection based analysis for a second-order elliptic equa-
tion. It shows that the generalized projection-based analysis is a natural extension of the
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classical one.

(mixed methods, around 1980) a2 “ a ˚ e ñ a ď e

(M -decomposition HDG, around 2010) a2 ` b2 “ a ˚ e ñ a ` b ď e

(our work, general HDG, around 2020) a2 ` b2 “ a ˚ e ` b ˚ δ ñ a ` b ď e ` δ

With these new analysis tools, we are able to devise/analyze new HDG methods or im-
prove the analysis of existing ones. The applications include time-harmonic and transient
elastic waves [3, 5], static and time-dependent Maxwell’s equations [4, 1] and Stokes equa-
tions [2].

3.3 Future research plan
M -decomposition for Maxwell’s equations in 3D. The theory of M -decomposition can
be used to systematically devise superconvergent HDG methods on general polyhedral el-
ements. However, to date, the theory is still missing for the three-dimensional Maxwell’s
equations.

In [4], we introduced a unified analysis framework for the HDG methods for Maxwell’s
equations. Based on this work, I am interested in studying the M -decomposition theory for
the three-dimensional Maxwell’s equations.
New link between HDG and mixed methods. Recently, a new link between HDG methods
and (hybridized) mixed methods was revealed in [Cockburn, Jpn. J. Ind. Appl. Math., 2023].
Here we quote from the paper:

We then uncover a new link between HM and HDG methods, namely, that any HM method
can be rewritten as an HDG method by a suitable transformation of a subspace of the ap-
proximate fluxes of the HM method into a stabilization function.

This new link has opened many exciting new directions of studying HDG methods. Among
them, I am especially interested in exact sequences for DG methods.
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